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Abstract—The extraction of information from image and
video is a challenging task in computer vision and machine
learning. A concrete problem is locating and labeling objects in
an image, for example during the conversion of satellite images
to road maps. In theory, this allows map-services to enhance
and update their images automatically by detecting new roads
from updated satellite images as well as to notify of dis-
crepancies between machine-generated and human-generated
predictions. Factors such as large variances in road designs,
lighting conditions, and occlusions make roads surprisingly
challenging to categorize correctly. This project explores the
use of various fully convolutional networks for labeling roads in
RGB satellite images and concludes with the use of a modified
U-Net to give reliable results for even a small data set of
training images.

I. INTRODUCTION

Road segmentation of satellite or aerial images is an
important task for autonomous driving, infrastructure mon-
itoring, lane-wise traffic management, and urban planning.
The low quantity of labeled images and the changing nature
of the underlying data makes this a hard problem. Recent
work has brought innovative ideas to this field and produced
different complex models relying fundamentally on Convo-
lutional Neural Networks [1] [2].

Given satellite images together with the labelled road
positions, our task is to train a model capable of pixel-
wise predicting roads on satellite images. This is a nontrivial
task due to occlusion, other structures looking similar to
roads, and the high variance in the visual appearance. We
present a novel idea, which extends and improves a common
image segmentation model called U-Net [3] significantly,
and results in convincing visual road segmentation even with
limited training data.

As our novel idea uses an initial encoder-decoder that pro-
duces the first predictions followed by secondary encoder-
decoder that refines the details. Further, we make use of
a technique called ”intermediate supervision” to alleviate
training issues. We discovered that this approach in com-
bination with dilated convolutional layers helped us getting
more accurate road predictions, and helped predicting more
continuous road segments.

II. MODELS AND METHODS

A. U-Net Implementation

We chose to investigate extensions on a commonly used
fully convolutional model, called U-Net[3]. Such a U-Net

can be trained end-to-end, and can provide convincing
results in biomedical image segmentation even with few
training samples. A U-Net has an encoding-decoding struc-
ture with a symmetric information flow between similar
layers in the encoding and decoding stages. This allows
capturing information at every scale, while still enabling
precise localization. For our initial codebase, we use a U-Net
implementation from GitHub in Keras https://github.com/
zhixuhao/unet, which we heavily modified.

Figure 1: Stacked U-Net Architecture used in our implemen-
tation.

Our U-Net consists of four encoding stages, which each
have two convolutions with filter size 3x3 and ReLU ac-
tivation, and finally a max pooling layer of size 2x2. We
start with 64 filters, and then double the number of filters
at each encoding stage, up to a maximum of 1024 filters.
The output of the convolutions of each encoding stage is
concatenated to the input of the matching decoding stage.
After the four encoding stages we apply dropout of 0.25.
Moreover we have two additional convolutions without max
pooling, and dropout of 0.25.

Secondly, we have four decoding stages. In each stage,
we first up-sample the input by a factor of 2 and apply a
convolution filter of size 2x2. Subsequently, we concatenate
the output of the matching encoding stage to the output
of the convolution and apply two convolutions with filter
size 3. After the four decoding stages a 3x3 convolution is
added to reduce the number of channels to 2. Finally, a 1x1
convolution with sigmoid activation function which reduces
the channel number to 1 acts as the output.

B. Stacked U-Net with Intermediate Supervision

Our novel approach is inspired by state-of-the-art work
in human pose estimation, where several stacked encoder-
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decoders help to reassess higher order spatial relationships
of predictions of previous encoder-decoders. Consistent with
the naming in the aforementioned paper, we dubbed this
model a ”Stacked U-Net”. A Stacked U-Net combines two
or more U-Nets, where the output of one U-Net flows into
the input of the next one. In order to feasibly train such a
stacked U-Net with two or more stacks, we use intermediate
supervision [4]. The output of each U-Net in the stack is part
of the loss function, which allows for repeated bidirectional
inference [4]. In the results section, it will be shown that the
Stacked U-Net approach helps to get cleaner predictions, and
allows infilling of clearly missing parts of predicted roads.

C. Data Augmentation

To address the difficulty of only 100 training images,
we relied heavily on perturbations. Similar to [3] we used
various types of elastic deformations of the input. Examples
are rotations, image flipping, stretching in one or both axis
and shearing of the images. Those augmentations were
randomly chosen from a range for each image individually,
and at each epoch differently. In order to still have valid 400
by 400 pixel input images, we cut off unneeded regions or
used mirroring to infill the missing regions.

Figure 2: top left: training image; others: automatically
applied perturbations to this image.

For predictions, we additionally employ an ensemble
method. Each training image to be predicted is first rotated
around 0, 90, 180 and 270 degrees respectively. Additionally,
each flip of these rotations is taken. This results in 8
predictions per image, which we combine by using the
average of them.

D. Dilated Convolutions

The main limitation of the approach so far is the lack
of context of neighboring pixels. It has trouble recognizing
bigger objects and is fooled by any local obstruction, such as
trees or bridges. Many errors happened on tricky parts of the
pictures, such as roads below a railway bridge could not be
classified based on the nearby pixels alone. That is the reason
why we added dilated convolution filters[5] before each
pooling layer (see Figure 2). Dilated convolutions are similar
to normal convolutions, but the filter is applied to points that
are not contiguous on the image. Each one is separated from
its neighbors by a fixed distance called dilation rate, and
they form a grid of evenly spaced points. With 2 layers and
a dilation rate of 2, we get some information from neurons
4 pixels away instead of 2 [6].

E. Input Size Invariance

Another difficulty provided the increased size of the test
images of 608 by 608 pixels. We tried different approaches
to address this problem. In theory, convolutions should be
size invariant if the input is bigger, but we clearly had worse
results by just using the 608 by 608 pixel images as input to a
network trained with 400 by 400 pixel images. Alternatively,
we tried an Overlapping-tile strategy, as implemented in [3].
We found simply resizing the test images to 400 by 400
pixels during predictions provided similarly good predictions
while being more efficient. Thus the results presented in
this paper will use the resizing of the input to provide the
required input size invariance.

F. Training Details

If not noted specifically in the results, training was done
using a provided set of 100 aerial images from Google Maps,
as well as ground-truth images where each pixel is labeled
as either road or background. We trained the model using a
pixel-wise binary cross-entropy loss between predictions of
probabilities of a pixel being part of a road and the pixel-
wise binary ground truth labels. For validation, we used an
additional 100 Images, that we generate from the original
dataset from which the training images originated. During
training, the model with the highest validation accuracy was
saved. The training was done with a batch size of 2 using
Adam optimizer with a learning rate of 0.001 and default
beta values[7]. For results using a leaky ReLU activation
function, we used an alpha parameter value of 0.001. Our
best performing model was trained on 1000 epochs, which
took approximately 9 hours.

III. RESULTS

A. Baseline Comparisons

We will subsequently compare our model to several
baseline implementations. A description of these baselines
implementations can be found in the Appendix. As baselines
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we use a SegNet architecture [8], a basic U-Net imple-
mentation and a simple Encoder-Decoder. For all those
baseline implementations, we used data augmentation given
the limited training data. All baseline implementations were
clearly outperformed by our proposed model as listed in
Table I.

B. Stacked U-Net

Data Augmentation proved critical, where the 360 rota-
tions, shear, flip and zoom of the training data were crucial
for decent results. Specifically this increased the detection
accuracy of diagonal roads since our data set contains mostly
horizontal and vertical ones.

Stacking two U-Nets improved the visual quality of the
results significantly, and the accuracy of the score slightly.
As can be shown in Figure 5. the second U-Net can
significantly improve on the visual quality of output of the
first U-Net. Using an additional third U-Net did not improve
the result as can be seen with the performance of U-Net-IX.

The next best source of improvement was dilated con-
volutional layers. Figure 3 presents the outputs of U-Net-
III, on the left when using dilated convolutional layers and
on the right without using dilations. It is clear that dilated
convolutions helped in the first two images, since the streets
are all well connected compared to the non-dilated images
on the left. However, this does not always give good results
as depicted in the images in the third row, because it can
make close streets merge together and thus increase the error
in those regions.

Model Stk Rot Aug Dil Ens Lk Score

Encoder-Decoder - ! - - - - 0.8449

Segnet - ! ! - ! - 0.8701

U-Net-I 1 - - - - - 0.8545

U-Net-II 1 ! - - - - 0,8689

U-Net-III 1 ! ! - - - 0.8805

U-Net-IV 2 - - - - - 0.8494

U-Net-V 2 ! ! - - - 0.8823

U-Net-VI 2 ! ! ! ! ! 0,8891

U-Net-VII 2 ! ! - ! - 0.8895

U-Net-VIII 2 ! ! ! ! - 0.8977

U-Net-IX 3 ! ! ! ! - 0.8954

Table I: Stk: Nr. of Stacks; Rot: 360 rotations; Aug: Aug-
mentations shift, shear, resize and flip; Dil: Dilation Layers;
Ens: Ensemble Prediction; Lk: Leaky ReLu used, otherwise
ReLu. Score is calculated as a mean of the public score and
private score of the Kaggle submissions.

Figure 3: Comparison of test images number 92, 168 and 200 from top
to bottom. The final predicted test images in the middle and in the left were
predicted using U-Net-III, once with dilated convolutions (middle images)
after the pooling layers in the encoding phase and once without dilation
(right images).

C. Ensemble Predictions

We can see the improvements introduced by ensemble by
looking at our models U-Net-V and U-Net-VII in table I.
These two models differ only in the ensemble step. In fact,
the ensembled predictions are more accurate and have less
noise around the edges.

D. Additional Training Data

To evaluate our model which was trained using only
100 Images, we also tested training the model with 600
images, which improved our score slightly. This model was
subsequently used in the final submission. The provided
training images are the upper-left corner of the images 1-109
of the chicago dataset[2]. We generated additional training
images by taking patches of remaining images in the dataset,
some of them handpicked as they represented rare cases.
Overall, training with the additional 500 training images
gave us our best Kaggle result (our selected Kaggle score).

IV. DISCUSSION

The Stacked U-Net improves the total details of the
segmentation in comparison to the vanilla U-Net (cf. Fig.
5). Therefore, the roads are more continuous, streets are
clearly detected and smoothed. Furthermore, it produced
good results with only 100 training images.

Although our method achieves good outcomes, they are
not uniformly positive (cf. Fig. 5). In spite of the good
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Figure 4: Examples of improved quality of the Stacked U-Net. On the
left we have the output of the first U-Net, and on the right the matching
output of the second U-Net.

results considering our limited training data, in certain cases,
it struggled with generalization challenges such as partial
or full occlusion of the streets, shadow creating different
illumination and overall rare cases. For example, test data
includes images of landing strips, that could be mistaken for
streets. Furthermore, the training set suffered from occasion-
ally wrong labeled data and especially parking areas were
considerably ambiguous. To mitigate such problems and to
observe the overall limitation of our approach, we generated
more training data from other data sources.

While we tried to explore further methods of adding
additional preprocessed training inputs, such as discrete
wavelet transformation or Laplace transformation, we did
not have enough time to come to a final verdict. The results,
however, looked promising.

V. SUMMARY

As we showed, using a stacked version of U-Net with
intermediate supervision leads to qualitatively convincing
results with very little data, but requires extensive data
augmentation. By using dilated convolutions within the U-
Net we can additionally improve the continuity of predicted

Figure 5: Example results of U-Net-VIII trained on only 100 Images. On
the left we have the output probabilities as overlay over the input images.
On the right the predicted roads using a probability cutoff of 0.6.

roads and get information from distant pixels. The definition
of a road can be tricky but it seems that road segmentation,
in general, is almost a solved problem and the model is
sometimes even better than humans.
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